Switch Mode Battery Chargers for Utilities: Why? How? and Where?

Haissam Nasrat

Yves Lavoie, Steven Monk

Primax Technologies Inc. Montreal, Quebec, Canada.

Schedule:

- History
- DC System Review
- SCR Type Battery Chargers
- SMR Type Battery Chargers
- Physical and Environmental Considerations
- Service and Repair Considerations

Typical MV switchgear diagram

AC source

Common Topologies

Ferroresonant

- Magnetic Amplifier (Mag-Amp)
- Thyristor (SCR)
- High Frequency switching (Switchmode)

SCR CHARGERS SPECIFICS:

- Single conversion stage

- Low frequency operation: larger components
- Need filters for Power factor and THDi correction

Switchmode Chargers Electrical Layout

SMR SPECIFICS:

- High frequency -> smaller components
- Compact design -> cooling fans if not: larger footprint
- 4 conversion stages
- 1ph units include PFC and THDi
- 3ph-3wire units: may or may not include PFC and THDi. Complex designs
- 3ph-4wire units: easier to design
- More power -> multiple parallel units
- 19" rack design

5kVA transformers: SCR vs SMR

5U 8 ³/₄ in. 17 ½ in. **125VDC-200A 19''** subrack 11

REDUNDANT SCHEME N+X

COMPONENTS

<u>SCR</u>

-Larger power -> larger components

<u>SMR</u>

Smaller components -> compact design/PCB mount

PCB mount -> modular designs

Physical & environmental considerations

Mounting

SCR: Wall mount or freestanding enclosures

SMR: 19" racks or wall mount enclosures

Physical & environmental considerations

SCR:

- One component failure: charger is down
- Need of skilled technician
- The failure becomes urgent
- Need of shutting down and disconnecting the charger

Service and repair: Factors to consider 15

SMR:

- One system is made of multiple parallel units
- One unit failure: reduced power
- If N+1 is implemented: no impact
- Repair can be made by less specialized tech to swap the unit
- No need to shut down the DC system
- Unit can be sent back to manufacturer for repair
- Failure of SMR -> non urgent event

Service and repair: Factors to consider

Cost of single SCR vs «N» SMR¹⁷

Cost redundant SCR vs N+1 SMR

Low power SCR charger is slightly more expensive than SMR

•High power 3 phase SCR cost become less expensive than SMR

•SCR curve flattens out in larger applications

•SMR curve is quite linear

Comments on Costs

- Chargers are installed dirctly under HV and high current busses
- MV Capacitor banks & inductive loads switching
- Transients as high as 5kV occur regularly
- Electrical rooms are not as clean as telecom central offices: more dust and less A/C

- Telecom: for over 30 years they are the prevailing option
- Europe and Australia, electrical utilities over 15 years.
- Some of these utilities exclusively specify SMRs
- Canada: Large utilities started using SMR

SMR Present experience

US and the Canadian industrial markets:

- New gas turbine applications
- Prefab Electrical Houses for industrial applications such as mining, petrochemical and smelting

SMR Present experience

No simple answer

Different applications dictate different technologies

Criterion	SCR	SMR
Scalable	No	Yes
Efficiency	Good	Better
Power management	No	Yes
Input power factor	Relatively poor	Very good
Low ripple	good	better
DC Capacitors aging	Little effect	Some effect
Single point of failure	Yes	No
Serviceability	easy	Very easy
System Reliability	Very good	Very good
Repair time	Good	Better
Phase unbalance & neutral currents	no effect	some effect

Criterion	SCR	SMR
Scalable	No	Yes
Efficiency	Good	Better
Power management	No	Yes
Input power factor	Relatively poor	Very good
Low ripple	good	better
DC Capacitors aging	Little effect	Some effect
Single point of failure	Yes	No
Serviceability	easy	Very easy
System Reliability	Very good	Very good
Repair time	Good	Better
Phase unbalance & neutral currents	no effect	some effect

Criterion	SCR	SMR
Dynamic regulation	Good	Excellent
Transients	Tolerant	Sensitive
Contribution into downstream Fault	Good	limited
Weight	Heavy	light
Size	Large	Small
Heat tolerance	Good	Limited
Dust tolerance	Good	Limited
Natural convection cooling	Yes	Limited
Spare parts	Individual parts	modules

Can we deploy the SMR on a larger scale for substations and power generation?

Most probably yes.

But not everywhere!

Conclusion

Thank You!